secundair logo knw 1

Waternet heeft in samenwerking met Witteveen+Bos de ordening en infrastructuur van gegevens over de hydrobiologie geoptimaliseerd. Het resultaat hiervan is een efficiënter gebruik van de gegevens, kwalitatief betere gegevens en een schat aan toegankelijke informatie. Door deze inspanning verschuift de aandacht van dataverwerking naar de interpretatie van gegevens. Dit artikel beschrijft de optimalisatieslag aan de hand van het datamodel van Waternet, de geautomatiseerde toetsing aan de KRW-maatlatten en de ervaringen met deze toepassing tot nu toe.

Download hier de pdf van dit artikel.

De afgelopen jaren is het beheer van ecologische en waterkwaliteitsdata steeds belangrijker geworden voor waterbeheerders. Enerzijds worden meer gegevens ingewonnen en anderzijds krijgen de ontsluiting en analyse van gegevens een centralere rol in het operationele waterbeheer en beleid. De toetsing van de ecologische data aan de KRW-maatlatten is hier een goed voorbeeld van.

Gegevens vormen een belangrijk fundament van het volgen en besturen van water(eco)systemen. Het bijeenbrengen en in samenhang presenteren van gegevens is de basis van aquatische systeemanalyses. Deze analyses helpen zowel bij het stellen van realistische doelen als bij het initiëren en evalueren van maatregelen om de (ecologische) toestand van wateren te verbeteren. Ontwikkelingen in ecosystemen en de factoren die hier invloed op hebben worden sneller in beeld gebracht bij een geautomatiseerde verwerking van gegevens.

Om grote hoeveelheden data te kunnen verwerken is orde en eenduidigheid nodig. Dat wil zeggen een duidelijke gegevensstructuur en afspraken over de gegevensuitwisseling met de laboratoria en onderzoekers die metingen uitvoeren in het veld. Daarom heeft Waternet zowel de grammatica als de betekenis van individuele woorden van haar “datataal” vastgelegd in een zogenaamd datamodel.

Begrip en enthousiasme

Bij de opzet van het datamodel horen een goede communicatie en het creëren van draagvlak bij alle partijen die betrokken zijn bij het proces van dataverwerking. Dit is onder andere gedaan door de laboratoria en veldmedewerkers te betrekken bij de ontwikkelingen door middel van een workshop, die in 2014 samen met Bureau Waardenburg is georganiseerd. Tijdens deze workshop is begrip en enthousiasme gekweekt voor eenduidige bemonstering, uniforme data en eisen voor de ontsluiting van gegevens. Het betrekken van alle partijen is belangrijk, aangezien zij de kwaliteit van de data en systemen borgen. Het besef van wat er met de veldopnames en labanalyses gebeurt, draagt bij aan deze kwaliteitsborging. Andersom draagt het besef van wat er in het veld gebeurt bij aan de kwaliteit van de opwerking van data.

Data op orde

Bij de opzet van het datamodel zijn de wensen van gebruikers continu het uitgangspunt geweest: wat wil ik met de database? Hoe belandt de informatie uit het veld in de database? En aan welk detailniveau is behoefte? Het opzetten van een datamodel blijkt essentieel voor de functionaliteit en ontsluiting van gegevens. Het dwingt consistentie af bij alle gebruikers.

In het datamodel is rekening gehouden met het Uitwisselmodel Aquo-metingen en het nieuwe landelijke model “IMWA-metingen” [1]. Zo is er optimaal gebruik gemaakt van de kennis en ervaring in deze standaard en kunnen gegevens uit de ene database eenvoudig conform Aquo-metingen worden uitgewisseld met een andere database. Er is veel aandacht besteed aan de documentatie van het doel en de methodiek waarmee de gegevens zijn opgeslagen, zodat de database over tien jaar nog steeds transparant en herleidbaar is. Bij het ontwerp van het datamodel is ook aandacht besteed aan een zo eenvoudig en efficiënt mogelijk beheer van gegevens en het kunnen filteren, visualiseren en exporteren van deze structuur in Delft-FEWS [2].

Figuur1 SchematischeweegaveLogischDatamodelWaternetAfbeelding 1: Schematische weergave van het logisch datamodel van Waternet

Met terugwerkende kracht zijn in samenwerking met Witteveen+Bos alle historische data gevalideerd en gecorrigeerd in deze structuur. Hierdoor is het mogelijk de ontsluiting van gegevens op elke gewenste manier te automatiseren, waaronder voor de KRW-toetsing.

Workflow KRW-toetsing

De KRW-toetsing is volledig geautomatiseerd met behulp van de opensourcesoftware “R” [3], waardoor de gehele procedure voor alle waterlichamen met één druk op de knop wordt doorlopen en nog geen dag duurt. Hierdoor is het bovendien mogelijk deze routine voor andere databases uit te voeren. Alle gewenste stuurknoppen zijn aanwezig en er kan zowel met de oude [4] als met de nieuwe maatlatten [5] worden getoetst.

Figuur2 Werkproces toetsing biologische dataAfbeelding 2: schematisch overzicht van de workflow van ruwe data naar overzichten van scores

De toetsresultaten worden direct samengevoegd in handige tabellarische en grafische overzichten van de (deel)maatlatten. Een voorbeeld van een grafisch overzicht is te zien in afbeelding 3. Deze overzichten kunnen onder andere met behulp van ArcGIS geautomatiseerd worden weergegeven op kaarten.

Afbeelding1 EKRMacrofytenOudeNieuweMaatlattenAfbeelding 3: EKR-scores van macrofyten op de maatlatten uit 2007 en 2012 in verschillende wateren

Door de eenduidige structuur van de database kunnen ook alle overige wateren en ieder andere denkbare gebiedsindeling worden getoetst. Daardoor was het bijvoorbeeld mogelijk om de 3.800 vegetatieopnamen in het overig water met beperkte inspanning te toetsen. Deze toetsing heeft een belangrijke rol vervuld bij het opstellen van het waterbeheerplan 2016-2021 van waterschap Amstel, Gooi en Vecht, waarin de ecologische toestand in het overige water en de KRW-waterlichamen is gepresenteerd.

Afbeelding2 OverigWater KRWAfbeelding 4: EKR-score van macrofyten per monsterlocatie en het 50-percentiel van EKR-scores in het overige water en KRW-waterlichamen

De automatisering van de KRW-toetsing levert een grote tijdsbesparing op en maakt het proces herleidbaar en reproduceerbaar. Bovendien is het hele werkproces transparant en zorgt de mappenstructuur voor orde in de digitale dossierkast. De opwerking naar overzichten in tabellen en geografische kaarten maakt de resultaten bovendien direct inzichtelijk en fouten in de data en het toetsproces zijn beter te traceren. Door de enorme tijdsbesparing bij de toetsingen (in 2013, 2014 en 2015) is meer ruimte ontstaan voor bijvoorbeeld goede analyses en het doorrekenen van alternatieven, zoals een alternatieve gebiedsindeling of een toetsing aan andere maatlatten. Een voorbeeld van een eenvoudige data-analyse van hydrobiologische gegevens wordt in afbeelding 5 geïllustreerd. In deze afbeelding staat de Beta-diversiteit of maat voor verscheidenheid aan soorten in een watersysteem weergegeven.

Afbeelding3 BetaDiversiteitMacrofytenAfbeelding 5: Beta-diversiteit per waterlichaam

Opslag en toegankelijkheid van gegevens

Deze enorme kwaliteitsverbetering maakt het mogelijk om data van hydrobiologie te ontsluiten in Delft-FEWS. Dit maakt de gegevens toegankelijker en biedt het voordeel dat verschillende typen gegevens (hydrologie, waterkwaliteit, meteorologie, modelresultaten) in samenhang kunnen worden bekeken en geanalyseerd.

Onze ervaringen met het nieuwe datamodel, de ontsluiting van hydrobiologische gegevens in Delft-FEWS en de R-scripts waar de geautomatiseerde toetsing in is gedefinieerd delen we graag.

Referenties

  1. http://www.aquo.nl/Aquo/uitwisselmodellen/index.htm, geraadpleegd 01-10-2015.
  2. https://publicwiki.deltares.nl/pages/viewpage.action?pageId=108954735, How to handle samples; timeseries with valueType "sample" used for water quality and ecological data, geraadpleegd 01-10-2015
  3. Venables, W. N., Smith D. M. and the R Core Team (2015) Notes on R: A Programming Environment for Data Analysis and Graphics. Version 3.2.2
  4. Molen, D.T. van der, Pot, R., Evers, C.H.M. en Nieuwerburgh, L.L.J. (red.) (2012). Referenties en maatlatten voor natuurlijke watertypen voor de kaderrichtlijn water 2015-2021. STOWA rapport 2012/31 .
  5. Evers, C.H.M., Knoben, R.A.E. & Herpen, F.C.J. van (red.) (2012). Omschrijving MEP en maatlatten voor sloten en kanalen voor de kaderrichtlijn water 2015-2021. STOWA rapport 2012, 34.
Typ je reactie...
Je bent niet ingelogd
Of reageer als gast
Loading comment... The comment will be refreshed after 00:00.

Laat je reactie achter en start de discussie...

(advertentie)

Laatste reacties op onze artikelen

@Willem VroomEr gaan werkelijk ontzettend veel boeren stoppen. Om van dit soort gezeur af te zijn. De hetze. Ondeugdelijke metingen. Onbegrijpelijke regels, controle`s etc. Het is geen leven hier in Nederland voor ondernemers.  
Evides gaat van 1.17 naar 1.40 eu per m³.... 20% erbij, is dit nog normaal?? Op 2 jaar tijd is er bijna 40% bijgekomen. Lonen stijgen zo hard niet hoor...
De regering zou eerlijk en duidelijk moeten zijn naar PAS-melders: PAS-melders voldoen niet aan de wet, dus moeten ze daaraan gaan voldoen. Verzachtende omstandigheid is dat deze boeren (zogenaamd) niet wisten dat de betreffende wet nog niet definitief was, want er liep nog een procedure en het was een geitenpaadjeswet. Toon als regering dan coulance en geef ze nog een paar jaar extra om aan de regels te voldoen. En boeren die daardoor failliet dreigen te gaan zouden gecompenseerd moeten worden.
Eerlijker voor de boeren en de maatschappij.
Verwijzing naar een elementair leerboek van de mechanica der vloeistoffen voor zelfstudie en onderwijs uit 1958 voor de onderbouwing dat er bij een worst-case scenario meer dan 1 miljard M3 water over de Waaldijk kan stromen -waardoor een oppervlak van 1.000 km2 zou overstromen- is te mager. Dat voldoet niet aan voldoende wetenschappelijke onderbouwing.
Het pleidooi voor meer overleg in het kader van grensoverschrijdend waterbeheer met Duitsland en België, maar ook met Luxemburg, Frankrijk en Zwitserland, is wel steekhoudend. Het stroomgebied van de Rijn beslaat naast Nederland immers Zwitserland, Duitsland en Frankrijk. Stroomgebied van de Maas beslaat naast Nederland ook Frankrijk, Luxemburg, België en Duitsland. Voor zover ik weet zijn er in waterschapverband slechts een aantal pilots hier momenteel concreet mee bezig o.a. via het ontwerpen en operationaliseren van grensoverschrijdend waterbeheer rondom de Overijsselse Vecht en ook voor delen van het Roer stroomgebied dat aansluit op de Maas. Ruimte voor de rivieren in Nederland gaat maar beperkte impact hebben als niet eenzelfde inhaalslag gaat plaatsvinden in de bovenstrooms genoemde landen.
Acht kennisinstituten uit Nederland, België, Duitsland en Luxemburg gaan daarom onder coördinatie van Deltares onderzoek doen naar beter beheer van grensoverschrijdende regionale stroomgebieden. De watersnood in juli 2021 heeft geleerd dat autoriteiten hier geen goed overzicht over hebben en dat kennis over de overstromings- en droogterisico’s langs de kleinere grensoverschrijdende zijrivieren van de Maas en Rijn nog heel versnipperd is.
Het artikel stelt terecht dat voor grensoverschrijdend waterbeheer nog te weinig urgentie is.
Weer een geval van: de gevolgen proberen te gaan bestrijden en de oorzaak niet aanpakken. Zo blijft het werk in de wereld. En de vervuiling.